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Predicting Growth Functions for Pinus thunbergii Windbreak Stands in Korea

Hyun Kim', Kae-Hwan Kim® Jong-Min Park®, Jae-Gwon Son* and Sang-Hyun Lee’

Abstract: Pinus thunbergii has widely been distributed, and is one of the main important forest resources for
windbreak stands in Korea. Diameter and height growth patterns were estimated using non-linear algebraic
difference equation, which requires two-measurement times T; and T,. In results, of the algebraic difference
equations applied, the Schumacher polymorphic equations for diameter and height showed the higher
precision of the fitting. Ninety-five percent of the observations that are used to fit height model could be
predicted within 1.4 m of the actual values. Polymorphic site index curves, hence, which reflect different
shapes for the different site index classes, were derived from the Schumacher equation.

1 Introduction

Based on the sophisticated technology accumulated and
experienced through the implementation of various
tideland reclamation projects in several decades in
Korea. Among them, a master plan for ‘Saemangeum’
Tideland Comprehensive Reclamation Project to meet
the demand of land and water resources to be required
for the development of harbors and industrial complex
in the years of 2000s when the western coastal era
comes.

This project will cost US$ 1,806 millions (1,300
billion won) for 14 years of the implementation period.
The major development works will comprise 34 km
long sea-dike construction and 40,100 ha of new land
reclamation with the additional construction works of
two sluice gates, 16 pumping stations, necessary bridges,
the networks of roads and canals of irrigation and
drainage.

On completion of this project, industrial complex,
agricultural regions for horticultural, livestock, etc.,
fishery ponds, settlement areas, and tourist resorts will
be built up in the 28,300 ha of reclaimed tideland.

Reclamation work of ‘Saemangeum’ in Korea will be
required windbreak stands. Main species for windbreak
stands in Korea can be classified into 2 groups, namely
coniferous and broadleaved trees. The coniferous trees
are such as Pinus densiflora, Pinus thunbergii,
Cryptomeria japonica, and Larix leptolepis etc.. The
broadleaved trees consist of Camellia japonica, Zelkova
serrata, Alnus japonica, and Dendropanax morbifera
etc.. Among them, Pinus thunbergii has been regarded
as an important species for windbreak stands in Korea.
Growth of the trees by age follows sigmoid-shaped
curves, and deriving growth function to presume this
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growth pattern supplies efficient utilization of forest
resources and basis for management. The clue to
successful timber management is a proper understand-
ing of growth processes, and for this various growth
functions and models have been used. Moreover,
suitable method utilizing the data from two successive
measurements is the algebraic difference form of a
growth function that has been used by number of
researchers (Clutter et al., 1983; Borders et al., 1984;
Lee, 1998, 2000). It usually starts with the basic models
which is the form of Y, = f (Y;, T;, T,) where the
response variable Y, measured at time T is described as
a function of the same variable measured at initial time
T; and a measure of elapsed time as a function of T, and
T. The Variable Y could be basal area, top height and
stems per hectare or any stand variables.

The objectives of this study, therefore, are to construct
diameter, height growth equations and site index curves
using the difference equation method, and to provide
basic growth information for windbreak stands, which
will be an essential task when the ‘Saemangeum’
reclamation work is successfully finished.

2 Materials and Methods

Data for this study came from Pinus thunbergii
temporary plots grown in the middle - west coast, Korea.
All of 20 plots, which were 20m x 20m size each plot,
were used for analysis. From each plot, 1 sample tree
was selected and cut, after cutting the sample trees
diameter and height were measured using stem analysis.
The basic data obtained from stem analysis, were
transformed into projection format of intervals between
time T; and T, that used to build equation. Mean age,
diameter and height were 36 years, 17.9 cm and 13.9 m,
respectively. The sample plots were with the gradients
of 15-30 degrees, and soil type was moderately moist
brown forest soil and mostly loam and clay loam. A
summary of relevant plot statistics is given in Table 1.

Table 1: Summary of sample plots statistics

Number Mean Mean Mean ; ;
of ages DBH height Alg::;de S(l?)p)e tSm{l:
Plots  (yr) (cm) (m) P

20 36 17.9 13.9 100 15-30 B;




The methods used for this study were difference
equation (Borders et al., 1984) that has been used
widely for growth and yield modeling studies. The main
standard statistical procedures used were non-linear
least-squares regression based on PROC NLIN in
Statistical Analysis System (SAS Inc, 1990). Among the
algorithms of PROC NLIN procedures used to estimate
parameters, the derivative-free method (DUD) that was
found to be best in convergence, was adopted for non-
linear least-squares regression (Ralston and Jennrich,
1979).

The PROC UNIVARIATE procedure was also used to
examine the residuals and provide several statistics that
are valuable for making inferences about residual
patterns. The important values utilized in the analysis of
this study were such as mean of residuals, skewness,
kurtosis and extreme values. In addition, graphical
charts and plots were used to check the distributions of
residuals with regard to normality of errors. Residual
errors were plotted against predicted values to
determine goodness of fit. Because whether or not the
residual patterns lay normally about the zero references
line was the important criterion for judging the
independent distribution.

The commonly adopted projection equations are log-
reciprocal (Schumacher, 1939; Woollons and Wood,
1992), Chapman-Richards (Piennar and Turnbull, 1973;
Goulding, 1979), Gompertz (Whyte and Woollons,
1990), Weibull (Yang et al., 1978; Goulding and Shiley,
1979) and Hossfeld (Liu Xu, 1990). There are two types
of projection functions used for tree growth models,
namely anamorphic and polymorphic functions. Firstly,

Table 2: General form of projection equations applied to

data
Equation name Equation Forms*
Schumache
ar(l:amorphicr Yo=Y exp (-f (UTy'- UTyY)
Hossfeld
anamorphic Ya= (/Y1) + B(UTS - 1/TY)
Chapman-
i Y2 =Y ,((1-exp(-BT2)) / (1-exp(-BT)))"
Anamorphic
Gompertz Y, =Y T T
anamorphic 2= Y, exp(-B(exp(yT,)-exp(yT1)))
Schumacher Y, = I T, ) e
polymorphic 2=exp(In (Yy) (TYT2)" + a (1 - (TV/T2)")
Chapman- Yz =(a/y)"PU1-(1-(y/0)Y,*P)
Richards poly  exp(-(1 -B) (T, - Ty)) 40P
Gompertz . Ya=exp(In (Y1) exp (- (ToTy ) +y (T-Ty?)
polymorphic +o(1- exp(-B (T Ty) +y(T, T )
Hossfeld
polymorphic ~ Y2= V(YD) (TYTo)' + (/) (1 - (T/T)"))

*Y; = Diameter and height of trees at age T,
Y, = Diameter and height of trees at age T,
Exp = exponential function

several frequently used and their accuracy of estimation
proved anamorphic equations were assayed such as
Schumacher, = Chapman-Richards, Hossfeld and
Gompertz functions. Then, polymorphic forms of
Schumacher, = Chapman-Richards, Hossfeld and
Gompertz equations were fitted to the data. The
functional forms of projection equations used are
presented in Table 2.

3 Results and Discussions

3.1 Prediction of diameter growth

Most anamorphic equations generally produced biased
residuals patterns, though Schumacher anamorphic
function proved little bit superior in statistics of
residuals and residuals patterns to other anamorphic
functions. The statistics of residuals of the anamorphic
equations fitted are presented in Table 3 with
corresponding mean square error values (MSE).

Table 3: Statistics of residuals with the anamorphic
equations fitted to data

Equation name MSE Me.an of Skewness Kurtosis
residuals
Schumacher 1.688  0.303 -0.212 -0.617
Chapman-Richards 1.829  0.301 -0.031 -0.587
Hossfeld 3.251 5.08 0.58 0.32
Gompertz 2.102  0.792 0.177 0.233

Then, polymorphic forms of Schumacher, Chapman-
Richard, Hossfeld and Gompertz equations were fitted
to the data. Most of the polymorphic equations
generally fitted well without apparent bias in residuals
pattern and showed better fit than anamorphic forms of
equations. In the Chapman-Richards equation, the
confidence interval of the coefficients of y was not
significant & = 0.05. Comparing residual pattern and
mean square error values, the Schumacher polymorphic
function, equation (1), with mean square error (MSE)
1.11 was found to represent better than the other
equation. The fitted coefficients and mean square error
are shown in Table 4.

Dy=exp(In(D1)(Ty/ T +a(1-(Ty/T2)F)) (1)

Table 4: Coefficients for polymorphic equation fitted to

data
Model Name CorTncients MSE
a B 4
Schumacher *3.639 0673 - 1.111
Chapman-Richards 2305 -0.024 0000 2654
Gompertz 3.194 0.098 0.0008 1.520
Hossfeld 26691 - 1523 1424




A plot of residual values against predicted values is
given in Figure 1. A plotting of residuals against predicted
values indicated that a random pattern around zero with
little biased trend. PROC UNIVARIATE in SAS showed
that residual statistics were satisfactory as it contained -
0.113 value for skewness and -1.202 value for kurtosis.
The skeweness and kurtosis of a normal distribution is
zero, but in practice values of these lesser or greater
than zero result from least-square regression. A Shapiro-
Wilk test for normality was totally accepted as 0.95 that
is very closed to 1 of normal distribution.
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Figurel: A plot of residuals against the predicted for
diameter polymorphic projection equation

3.2 Prediction of height growth

The anamorphic and polymorphic functions were
applied, such as the log-reciprocal equation, Chapman-
Richards, Gompertz and Hossfeld. The fitted
coefficients and mean square errors are shown in Tables
5 and 6.

Table 5: Coefficients for anamorphic equation fitted to

data
Model Name pciicienty MSE
] B a
Schumacher 0.131 8.599 - 0.599
Chapman-Richards - 0.014 -0.899 0.601
Hossfeld - 0.677  0.589 1.266
Gompertz - 0.077 -2.624 0.798

Table 6: Coefficients for polymorphic equation fitted to

data
Misdel Naie Coefficients MSE
] B r
Schumacher 4.282 0.359 - 0.458
Chapman-Richards - -0.024 - -
Gompertz 3.120 0.072 0.0005 0.520
Hossfeld 29.517 - 1.129 0.514

Most anamorphic equations showed to be unsuitable
with residual patterns, while the Schumacher equation
had the lowest mean square errors (MSE) value, which

has been used as first option for selecting the best fitting
model because the equation with the least biased
residuals patterns has been found to have the lowest
MSE values, among the anamorphic equations.

None of the asymptotic 95% confidence intervals of
each coefficient contained zero that means the
coefficients are significant at the o= 0.05 level
However, coefficients a, f and y of the Chapman-
Richards polymorphic equation were failed to converge.
Therefore, the Schumacher polymorphic function,
equation (2), that has the lowest MSE (0.458) value was
found to represent the best fit.

Ha=exp(In(H, (Ty/T2)P+a(1-(Ty/To)?)) )

The data were evidently well balanced with no
apparent bias or systematic patterns and showed
goodness of fit as shown in Figure 2.

Figure 2: A plot of residuals against the predicted for
height polymorphic projection equation

The equation (2) contained desirable functions com-
monly used in growth and yield models, such as
compatibility, consistency, and path-invariance (Clutter
et al., 1983). As T, approaches infinitely, H, approaches
the upper asymptote a, when T; equals T, then H;
equals H, (consistency property), and the projection
from T, to T; yields the same result as the projection
from T; to T, followed by projection from T, to T3
(path-invariance property).

The PROC UNIVARIATE statistics in Table 7 proved
that the equation provides an unbiased precise estimate
of height as it contained -0.036 value for skewness
which indicated little bit long tails to the right and -
0.615 value for kurtosis, the heaviness of tails in a
distribution. A Shapiro — Wilk test for normality was
totally accepted as 0.970 that is very closed to 1 of

Table 7: Summary of statistics of residual values for
height projection equation

Statistics Name Values
Mean 0.086
Skewness -0.036
Kurtosis -0.615

W: Normal 0.970




normal distribution. The mean of the average residuals
was 0.01 m, which represents a slight underestimation,
but showed very accurate and precise estimation. The
equation gave a maximum residual of 1.3m, a minimum
residual of -1.4 m, and 95% of residuals lay +1.4 m.

3.3 Deriving site index equation and curves

The site index equation (3) can be derived from height
equation (2) by setting H, =site index (SI) when T, =40
years, which is used for the base age of Pinus thunbergii
in this study because it is closer to the rotation age.

SI=exp(In(H1)(T1/40)Y+a(1-(T1/40)Y)) 3)
Where, o= 4.2825, y=0.3599.

Site index curves can then be generated by
rearranging equation (3), and making H; the subject.
Substituting SI with any required site index values (e.g.
10, 20, 30, and 40) results in polymorphic height growth
curves. Figure 3 shows a set of site index curves
resulted from equation (4).

[ ST 1/(Ti/40)#
exp(a(1-(T,/40Y))

40

Height (m)
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L—.— Site index 10 —B— Site index 20 —#&— Site index 30 ,

Figure 3: Site index curves for Pinus thunbergii derived
from a height equation

4 Conclusions
The Schumacher polymorphic equation provided
satisfactory models of the diameter and site index
equation for Pinus thunbergii grown Saemangeum
surrounding regions in Korea. This was ensured by
comparing the respective residual mean squares values,
where the Schumacher polymorphic equation was the
lowest in value, as well as better residual patterns and
residual statistics.

It is unrealistic to expect a unique function to perform
consistently better than others with forest growth data.
However, the initial selection of appropriate equations is

most important for success of the goodness of fit models.

This research will provide basic information of growth
pattern for Pinus thunbergii, which is expected to use as
main species for windbreak stands after finishing

‘Saemangeum’ reclamation work.
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