庄内海岸砂丘地における防風効果からみた樹林帯配置
佐藤亜貴夫1*・中島勇喜2・六本木貞男3・柳原敦4

Evaluating location and layout of a Forest Belt based on The Effect of Wind Protection in Shonai Coastal Sand Dunes
Akio Satou1*, Yuki Nakashima2, Sadao Ropongi3 and Atsushi Yanagihara4

Abstract: In this study, the authors examined the location and layout of a forest belt mainly consisting of Japanese black pine in Shonai Coastal Sand Dunes based on their effect of protection against wind erosion. Firstly, we collected data on topography, components and structures of the forest belt, and wind velocity in the area including shifting sand prevention forest, windbreak for cropland, and top of sand dunes where wind erosion is significant. We then organized the data based on their effect of wind protection and determined suitable location and layout of the forest belt. As a result, necessary conditions for the forest belt with adequate wind protection in this area were selected. Furthermore, we were able to confirm that tree height could be used as an indicator when deciding the width of a forest belt.

Keywords: Coastal forest; Effect of wind protection; Shifting sand prevention forest; Windbreak for cropland; Location and layout of a forest belt

1 はじめに
日本は海岸線が長く、総延長は34,000kmにも及び、また、日本列島中央を脊梁山脈が縦走し、山地が7割近くを占めるため、人口や産業活動が沿岸域や海岸後背地の平野部など限られた地域に集中している。しかも沿岸域では、津波や高潮、冬季の風流などの激しい自然条件にさらされるため、それらを防していくことが必要となる。このような背景から、沿岸域での土地利用は、①砂丘地自体を作物生産の場として直接生産的に利用すること、②内陸部を防風、飛砂、潮風などから防ぐために砂地を治めることの2つの視点が必要となる。

日本各地では、海岸部にクロマツを植林し海岸林を造成することにより②の目的を達成してきた。しかし、①の直接的な利用と②の防災的な役割を担った海岸林との接点である境界部がしばしば問題となり、昔から海岸林の幅（厚さ）の決定が問題視されてきた（中島・柳原ら、1987）。

そこで、海岸林の持つ防災機能のうち、強風・飛砂・潮風防止などの基本となる防風機能に着目し、海岸林の防風機能と林分布の関係を現地調査により明らかにし、庄内海岸砂丘地において、海岸林がどの程度の幅を持っては最適な樹林帯配置となるかについて検討した。

2 調査地概況
調査は、山形県の日本海岸沿いに位置する庄内海岸砂丘地において実施した。庄内海岸砂丘は図1に示すとおり、北は遊佐町吹浦から南端は鶴岡市湯沢浜の34km区間に広がり、幅は狭い箇所で1.5km程度、最大幅は3.5kmとなり、面積7,000haの大型砂丘で、日本でも有数の砂丘地となっている。庄内海岸砂丘地では、昔から飛砂防止のための対策が講じられており、江戸中期から防風林造成としての植林が始まり、昭和26年からは汀線際の砂地に対する砂防林の造成が本格的に実施され、現在のクロマツ海岸林（約2,500ha）を形成し、庄内平野の広大な防砂帯地を風流や飛砂から防いでいる。

砂丘は南北に東部砂丘、中部砂丘、西部砂丘の三列からなり、海沿いの西部砂丘は砂原であったのが砂防工事によって形成された人工砂丘と、その後の砂丘で部分的に十里塚、浜中の集落を囲むようなバルハンの形態を示す明治砂丘からなり、中部砂丘は西部と東部砂丘の間隔高5〜10mの低地点で部分的に高いところがある。東部砂丘はほぼ標高50〜70mで東側内陸部は急勾配となり、西側は緩傾斜で数段の階段状になっている（村井・石川ら、1992）

気象条件は冬季には季節風の影響下に入り、11月〜翌年3月頃まで北西〜北西の強い風流にさらされる。

本研究では、飛砂防備林や潮害防備林など汀線に隣接する最も前線の林を前線防風林、内陸部の耕作地と隣接地の間にある列植の林を後部防風林として定義した。また、調査は庄内海岸砂丘地の前線防風林については最上川以南の山川地区で5箇所、後部防風林については、鶴岡市七条、遊佐町十里塚の2箇所で調査を実施した。
3 樹林帯による防風効果
海岸域における樹林帯の防風効果は、①森林内に入った風が樹木の幹、枝、葉によって減速されること、②森林上部で森林が粗度として働くことにより減風されることの2点によってもたらされると考えられる。しかし、樹林帯を通過することにより、防風の効果がどこまで、どの程度発揮されるかは、地形や樹林帯、風の状態などによって異なっており、それを明らかにするため、すでに現地での観察や、風洞実験を用いた研究などが実施されている（鈴木：1984、中島・柳原：1987、平田・山野井ら：1988、村井・石川ら：1992、鳥田：1997、中島ら：1999）。これらは主に、減風率、減風範囲と樹林帯構造の関係について調査されており、樹林帯の構造については、樹高、樹林帯、密閉度（立木密度）が主な研究対象となっている。現在までに確認されている事項を以下に整理した。

樹高：風速の低下により、減風範囲に大きく影響する。

林帯幅：林帯幅が大きいほど防風効果が大きい。ただし、ある一定の幅を超えると減風率は高くなるものの、減風範囲が狭くなる。

密閉度：密閉度（立木密度）が高くなるほど防風効果が大きい。しかし、ある一定の密閉度を超えると、樹林帯の最適風速下が小さくなるもの、減風範囲が狭くなる。一般に、60〜70%の密閉度の場合、減風率、減風範囲も大きくなる。

しかし密閉度については、計測方法が確立されておらず現地で計測することは非常に困難である。筆者らが実施した間伐前後の風速変化調査においても、局地的な変化が認められたものの、樹林帯としては、施業前後の風速にほとんど変化が認められなかった。また、樹木の場合、立木密度と個体の生育状態は密接に関連しているとされ、一概にどの程度の立木密度が理想であるかの言い方が、直内海岸砂丘地では、クロマツが保安林として指定されていることから、多くの箇所で十分な林帯幅が確保されており、密閉度の影響を示す地域であるといえる。

したがって、本研究では樹林帯の防風機能を考慮にあたり、樹林帯構造として樹高と林帯幅に着目し、前線防風林、後部防風林での最適な樹林帯配置について検討した。ただし、樹林帯配置を考慮した場合、防風効果は樹林帯だけでなく地形の影響も大きく受けける（金内・中島：1986）とされていることから、地形も項目として加え、直内海岸砂丘地における最適な樹林帯配置を検討した。

4 前線防風林の配置と防風効果
前線防風林の配置については、最上川の南に位置する川南地区の前線防風林において、林帯幅の異なる5つの測線を抽出し検討した。各測線の林帯幅を表1に示す。

表1：各測線の林帯幅

<table>
<thead>
<tr>
<th>测線名</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>林帯幅(m)</td>
<td>630</td>
<td>300</td>
<td>260</td>
<td>225</td>
<td>125</td>
</tr>
</tbody>
</table>

4.1 調査および解析方法
調査は、地形測量、立木調査、風速調査の3項目を実施した。地形測量は各測線とも海側林縁と直角に測線を設定し、縦断測量を実施した。立木調査は、ラインランクセント法の要領で測線に沿って片側2m、計4m幅に生育する立木を調査し、地形の変化点および樹高の変化点において樹高、枝下高、胸高直径を測定した。ただし、この樹高は、厳密な樹高ではなく、図2に示すところ、樹冠上部の表面の高さ（以下、樹冠表層高）を計測した。風速調査は、風下側の煙地に風速測定点を林縁から10m、10m、20m、30m、40m、50m、100mの8地点設け、季節風が強くなる冬季で汀線の風速が10m/s以上の日に実施した。実施にあたっては、汀線、林内、溝地の高さ2m地点に小型ロビンソン風速計を設置し、汀線と各地点の風速を同時に10分間計測した。風速は、汀線の風速を基準とし、各地点の風速を風速比(%)で表した。

4.2 結果および考察
調査の結果、各測線とも樹林帯前線部から離れるにしたがい徐々に樹冠表層高が高くなっており、それに伴い胸高直径が大きく、立木密度が小さくなっていた。ただし、測線IVの樹高は、屋内空気の影響で屋内に位置していたため制限表面確保のため樹高14mで梢端剪定が実施されていた。各測線の樹冠表層高の推移を図3に、胸高直径、密度の推移を図4に示す。
林帯幅が広い測線I ～ IIIでは、樹帯前線部から一定距離離れるときに風速が一定になっていることが確認できた。逆に林帯幅の短い測線IV、測線Vでは、高さが一定になっていないことが確認できる。樹帯表層高は、海からの強い風により前線部で低くなっていると考えられ、林帯幅が十分に広い場合、内陸側ほど高くなりやがて一定になっていたことに、一定になった地点である程度風からの影響が少なくなっていたと推察された。

各測線の風速比を図5に示す。各測線とも林帯部から距離が離れるにつれ風速比が大きくなる傾向が認められた。最も林帯幅の広い測線Iにおいても林帯から100m地点で風速比が約40％近くまで回復していることが本研究では、風速比40％を防風効果が十分認められる基準として考えた。その場合、測線I ～ IIIでは防風効果が認められるものの、測線IV、Vでは林帯から60m地点で風速比40％以上となっているため十分な防風効果が得られないと考えられる。特に測線Vでは、林帯部がすでに風速比40％を超えていっていることから樹帯の防風効果が十分に発揮されていないと考えられる。

測線I ～ IIIはほぼ同程度の風速比量となっているものの、測線IVで約1.3倍、測線Vでは約1.6倍風速比量が大きくなっていることがわかる。このことから、測線I ～ IIIでは、樹帯の防風効果が十分に発揮されていると推察できた。このときの樹帯構造に着目すると、林帯幅が広く、樹帯表層高が一定になっていることが確認できた。

先にも示したとおり、樹帯表層高は海からの風の影響を受けていていると考えられるため、この高さが一定になる林帯幅が確保されていれば十分な防風効果が発揮されていると推察される。また、樹帯は風の範囲に大きな影響を与えることから、これが最大限に保たれていることは風の範囲の向上からも重要である。

以上のことから、図3に着目すると測線I ～ Ⅳ00m、測線I 、IIIでは約250m程度の距離で樹帯が18～20mと一定になっているのがわかる。したがって、庄内海岸砂丘地での前線防風林は最低でも樹帯表層高が一定になる約250m程度の林帯幅が必要であると判断でき、樹帯表層高が林帯幅を決定する指標となることが確認できた。

5.1 調査および解析方法
調査は、前線防風林調査と同様の調査を実施したが、風速調査については、各屋において林帯から20m間隔で実施した。ただし、林内での風速調査は実施していない。樹帯構造を表3に、各黒での風速比を図6に示した。風速比については、前節同様、40％以下を防風効果が十分発揮されている基準とした。

表 3: 後部防風林の樹帯構造

<table>
<thead>
<tr>
<th>項目</th>
<th>平均</th>
<th>調査数</th>
</tr>
</thead>
<tbody>
<tr>
<td>樹帯表層高(m)</td>
<td>15.6±0.42</td>
<td>26</td>
</tr>
<tr>
<td>枝下高(m)</td>
<td>5.7±0.66</td>
<td>26</td>
</tr>
</tbody>
</table>

5.2 結果および考察
調査の結果、樹帯表層高は、前節の飛砂防風林程度よりも低い結果となった。また、林帯幅が狭くなると枝下高が低くなる結果が得られたが、これは林帯幅が狭く林帯の中まで光が届かずだと考えられた。枝下高は低い方が枝
葉が増加するため密閉度が高くなり防風効果が期待できる。しかし、本調査地においては密閉度の違いが風速比に大きく影響している箇所は認められなかった。

現①～⑧までの風速比を確認すると、現①では、海側に前線防風林が約300mあるため、現①の180m地点まで風速比が40％以下と十分な防風効果が認められた。しかし、現①の幅が190.5mと広いため、190.5m付近では風速比が55%となり風速が回復していた。現②、③では樹冠表層高が低く、林帯幅も1～3m程度で狭いため全体的に風速比が高くとなっていることが確認できた。現④、⑤では樹冠表層高は17m程度と十分高いにもかかわらず、林帯幅が10m以下と狭いため、現③、⑤よりも風速比は低いものの、風速比40%を超える箇所が認められた。現⑥では、前方の林帯幅が130.2m、樹冠表層高16.2mと高く、現⑥の幅が70mと狭いため、風速比が40%を下回っていた。現⑦では、幅が60mと狭いが、林帯幅も8mと狭いため風速比の高い箇所が認められた。現⑧は前方の林帯幅が30.5mであるが、現⑧の幅が105mあるため、現⑧の終わり付近で風速比が67.8%と高くなっていた。これは地形の高いことと、風の幅が広いためと考えられる。現⑨では、地形の低いものの林帯幅が狭く、現⑨の幅が広いため風速比40%以上に回復していると考えられた。現⑩、⑪の間の林帯幅は48.8mであったが、測線上の一部がクロマスの若齢林であったため樹高が1.4mと低く一部風速比が40%を超えるものの、その他の地点においては、風速比40%を下回る結果となった。これは、現⑩前方の林帯幅が231mと厚く、樹冠表層高も約16mと高 conduc, 異の広さも100m以内であったためだと考えられた。現⑫～⑮は、すべて風速比40%以下を回っており、防風効果が高い結果が得られた。これは樹冠带の樹冠表層高が高く、樹の広さとそれを挟む樹冠带の広さがバランスよく配置されていたためであると考えられる。

防風効果が十分に発揮された箇所の共通点を整理すると、樹冠表層高が約16m以上であり樹を挟む林帯幅が前方、後方ともに約25m以上、かつ風の幅が95m以内となっている。他の箇所ではそれらの条件を満たしており、例えば現④、⑤、⑦のように風の幅が95m以内で樹冠表層高が16m以上でも、林帯幅が狭く風速比は高くなっており、現⑧のように、前方の林帯幅、樹冠表層高が前記の条件を満たしていても風の幅が広い場合は風速比が高くなっていている。つまり、樹冠表層高、林帯幅、風の幅の3つの条件がすべて満たされていなければ十分な防風効果が得られないことが確認できた。

以上のことから、後部防風林では、樹冠表層高が16m以上、林帯幅が25m以上、風の幅が95m以内で、樹冠带と樹が交互に配置されているば、十分な防風効果が発揮されることが確認できた。

6 砂丘頂部付近での樹冠配配置と防風効果

一般に砂丘頂部付近では、地形上、風衝地となり風による影響が強く、前節で調査した七星では、砂丘頂部に向かって風上側斜面において、樹帯が十分に残って
したことから、図1の風速比が低く抑えられた結果が得られたが、丘頂部までの風上側斜面の樹林帯が分断されている場合、どのような結果となるかを庄内海岸砂丘地の北端付近に位置する十里塚において調査した。

6.1 調査および解析方法
調査は、砂丘中腹部～丘頂部にかけて、図7に示すA～Cの3つの測線を設定して実施した。測線Aは、七箇と同様、斜面上に切れ目がない樹林帯がある場合、測線Bは樹林帯2つに分断されている場合、測線Cは樹林帯が3つに分断されている場合で、各測線の樹林帯前面部にある砂での風速比の変化について調査した。各測線とも風上側林縁部（0m）は過去に宅地及び道路整備のため切土されており斜面となっている。また、砂丘中腹部～砂丘丘頂部にかけての斜面であるため、地形の起伏が大きく、風速比となっている。

各測線で、前節同様、縦断測量、林分構造と風速調査をおこない、風速比40%以下を防風効果が十分発揮されている基準とした。

6.2 結果および考察
各測線の樹林帯構造、風速比と地形との関係を図7に示した。測線Aでは、林帯幅と樹高が十分に大きく、砂丘丘頂部を超えた地形が風下側に傾斜している部分が現れていて、風速比が低い値を示していた。

測線Bの砂B-1では、前方の林帯幅が42.4m、砂B-2では71.4mと前節で示した後方防風林の条件を満たしているが風速比が40%を超えており、十分な防風効果があったとは言えない。これ、前方樹林帯の樹冠表層が低いためと風上側斜面上であるため地形的に風速比となっていることが原因であると考えられる。一方で、砂B-2では、一部風速比40%を少し超えているもの、全体的に防風効果が発揮されていない。これは、前方の林帯幅が十分広く、地形的にも少しずつ高まったためであると考えられる。

また、一部風速比40%を越えた地点は、地形的に高まっており、地形条件として風があたりやすい状態になっているためと考えられた。

測線Cの砂C-1では、砂C-1と同様、後方防風林としての条件は満たしているものの、風速比であるため風速比が非常に高くなっており、砂C-2は樹根部で風速比50%近い値を示していたが、それ以外の地点では風速比が低くなっている。砂C-3では、風速比が50%を少し超えているものの、全体的に防風効果が発揮されていると考えられた。

樹林帯の後方に分布する砂において、一般的には林縁付近の風速比が小さく、林縁から離れると大いに大きくなる傾向が認められたが、砂B-1、砂C-1、砂C-2では、林縁部の風速比が大きいか、林縁から離れると大きい風速比が小さくなっている。これは図8に示すとおり、砂が砂丘の1つで、砂の堆積により風速比が大きく、林縁から離れると小さい風速比が小さくなったと考えられた。

以上のことから、防風効果の発揮を考えた場合、砂丘丘頂部付近の風上側斜面など風速比においては、樹林帯を分断せずに大きく残すことが重要であることが確認できた。また、防風効果の発揮については、樹林帯の影響があるものの、地形的な要因が大きい影響を与えていることが確認できた。したがって、風上側斜面や風速比においては、樹林帯を大きく残すとともに、土地利用が必要な場合は防風となるよう整地するなど、地形の起伏や状態を十分に考慮した樹林帯配置が必要であると考えられる。

7 庄内海岸砂丘地における最適樹林帯配置
庄内海岸砂丘地において防風効果からみた最適な樹林帯配置を検討するため、前述した前線防風林、後方防風林、砂丘丘頂部付近の風速比での結果を一連の測線として示す図9のとおりとなる。

図9に示すとおり、前線防風林においては、樹冠表層が一定になる林帯幅が非常に大きな防風効果が得られると考えられ、庄内海岸砂丘地では、十分な防風効果を得るために約25m以上の林帯幅（樹冠表層高18m）が必要であることが確認できた。また、後方防風林では、樹林帯と砂を交互に配置する必要があり、防風効果を考えた場合、砂の広さも考慮する必要があることが認められた。庄内海岸砂丘地においては、林帯幅25m以上（樹冠表層高16m）、砂の幅95m以下で砂と樹林帯を交互に配置することが最適であると考えられた。ただし、砂丘丘頂部や風上側斜面などの風速比においては、できるだけ樹林帯を分断することを考慮した。
せず、斜面すべてを覆うような形で配置することが望ましく、
土地利用上、樹帯帯分断が必要な場合は、地形を風阻
になるよう整形した上で活用することが重要となる。特に、
防風機能の発揮は、樹帯帯だけでなく、地形的影響を大
きく受けることが確認されたため、地形が高くなっている箇
所や風衝地に対しては樹帯帯を積極的に配置する必要
性があると考えられる。

8 おわりに
本研究では、庄内海岸砂丘地における防風効果からみた
最適樹帯帯配置について、どのような樹帯帯構造（樹帯表
層高、樹帯幅）や樹帯帯配置が最適かを検討した。

風速比40%以下を十分防風効果が発揮されていると定
義した場合、樹帯帯構造とその配置により、防風効果が発
揮されている場合と発揮されていない場合のことが確
認できた。防風効果が十分に発揮されている場合の樹林
帯構造と配置を整理した結果、図9に示した樹林帯構造と
配置が防風効果を十分に発揮するために必要な条件であ
ることが確認でき、これらの条件が当該地区において最適
な樹林帯構造および配置であるとの結果が得られた。

また本研究の検討過程において、前線防風林の林帯
幅が大きな箇所では、樹帯表層高が内陸部に向かうにし
tくらい高くなり、ある地点比から一定になることが確認さ
れた。これは、樹帯帯表面が汀線から前線防風林までの
地形や海からの強風などの外部環境によって制限を受け
ているためと考えられるが、樹帯幅が十分確保されている
場合、その地区の外部環境に応じた形状で樹帯表層高が
推移し、外部環境の影響が和らぐある地点から高さ一定
になることを示していると考えられた。したがって、樹帯
表層高が一定になる地点では、ある程度強風からの影響が
小さくなっていると判断できる。そのため、海岸砂丘地の直
接的な利用と内陸部に対する防災機能発揮の2つの視点
を考えた林帯幅を検討するにあたり樹帯表層高が重要
な指標になると考えられた。

今後は、庄内海岸砂丘地だけでなく、他の海岸地域に
おいても同様の調査を実施することにより、防風効果が十
分に発揮される林帯幅が樹帯表層高で指標できるかにつ
いて検討していきたいと考えている。

引用文献
術に関する研究（II）-風洞実験による防風林模型の減風
効果-、沖縄県林業試験場研究報告、第40号、pp.39-51。
海岸防護工と海岸林allen、水利科学、No.168第30号第1号,
pp.38-63。
海岸林、ソフトサイエンス社、513pp。
林の減風機能に及ぼす林分条件の影響、日本林学会東
北支部会誌、第39号、pp.250-252。
林生導入による保全技術、平成8〜10年度文部省科学研究
費補助金基盤研究B（2）研究成果報告書、218pp。
誌、第47巻（2）、pp.128-135。
る防風洞実験、神奈川県林業試験場研究報告、第10号,
pp.43-48。
に関する研究～風洞実験の結果により、北海道林業試験
場研究報告、第34号、pp.97-102。

【受付 平成21年8月27日 受理 平成21年11月25日】